Once you start writing code, you will find out that parts of the code repeat
themselves. This is normal in programming. When you happen to find this kind of
pattern, you can make it reusable by creating a function.

A function is a separate piece of code that can be called on demand, by specifying
its name in the execution. Here is an example of add(x, y).

Good to take note here: Function and method are used interchangeably in most
cases, but there is a difference: functions can be stand alone while methods are
bound to a specific class. But what is a class?

What happens when we need a different data type combined with specific
functionality. Let’s say a player that has a function to take damage. In this case, we
can use a class.

A class can be defined by simply the class instruction and a name on top of any
script.

We can make use of a class in another script. Another advantage of classes is that
they can be inherited. That means that all their variables and functions trickle
down to their children while adding more functionality.

Let’s take the simple example of a base enemy which has health and take damage.
Then, we can proceed and inherit from that to create a soldier, a big boss and
whatever enemy type we need.

Now that we know what a function is, let’s take it one step more: enter recursive
functions. When a function has calls to itself it’s called a recursive function.

But having calls to itself might lead to infinite loops! This is a common issue when
implementing recursive functions. Luckily, there are ways to mitigate this. One of
them is using what is known as “exit conditions”. They provide a way to exit the
recursive loop.

Let’s look at this small example of a function that prints 5 numbers.

That concludes the programming primer! For more about GDScript, I’ve linked
some great resources below.

Ultimate Godot Game Al for Beginners | Redefine Gamedev 2022



